78 research outputs found

    Robust Control Synthesis for Gust Load Alleviation from Large Aeroelastic Models with Relaxation of Spatial Discretisation

    No full text
    This paper introduces a methodology for the design of gust load control systems directly from large aeroelastic models with relaxation of spatial discretisation. A convenient state-space representation of the vortex-panel unsteady aerodynamics suitable for control synthesis is presented. This allows a full understanding of the dynamics of the linearized vortex aeroelastic model and is suitable for control system design. Through the use of robust controllers, large reductions in loading could be achieved. Comparisons are also made between robust and classical control methods. It further demonstrates that controllers synthesized from models of coarse spatial discretizations and of an order of magnitude smaller in size were capable of rejecting disturbances on fully converged models, with performances comparable to expensive higher order controllers developed from full models

    Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    Get PDF
    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip-structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach

    Aeroservoelastic modelling and active control of very large wind turbine blades for gust load alleviation.

    No full text
    The increased flexibility of wind turbine blades necessitates not only accurate predictions of the aeroelastic effects, but also requires active control techniques to overcome potentially damaging loadings and oscillations. An aeroservoelastic model, capturing the structural response and the unsteady aerodynamics of very large rotors, will be used to demonstrate the potential of closed-loop load alleviation using aerodynamic control surfaces. The structural model is a geometrically-nonlinear composite beam, which is linearised around equilibrium rotating conditions and coupled with a linearised 3D Unsteady Vortex Lattice Method (UVLM) with prescribed helicoidal wake. This provides a direct higher fidelity solution to BEM for the dynamics of deforming rotors in attached flow conditions. The resulting aeroelastic model is in a state-space formulation suitable for control synthesis. Flaps are modeled directly in the UVLM formulation and LQG controllers are finally designed to reduce fatigue by about 26% in the presence of continuous turbulence. Trade-offs between reducing root-bending moments (RBM) and suppressing the negative impacts on torsion due to flap deployment will also be investigated

    Buffet loading, dynamic response and aerodynamic control of a suspension bridge in a turbulent wind

    Get PDF
    This paper describes experiments relating to the buffet response and control of a section of a long-span suspension bridge deck elastically mounted as part of a wind tunnel experiment. The bridge section is subject to grid generated flow turbulence. Two grids are used — one is a standard biplanar grid, while the second is a new design that provides larger turbulence length scales. The buffet response results are compared with admittances calculated using unsteady, three-dimensional, lifting-surface theory that extends standard two-dimensional Sears' theory. The bridge deck heave and pitch responses are predicted with comparisons made with wind tunnel measurements. In order to suppress buffeting, and increase the deck's critical flutter speed, the deck model is fitted with controllable leading- and trailing-edge flaps. Two sets of passive controllers, which use the flap angles as the control inputs, are demonstrated and evaluated for their capability to suppress the buffet response of the deck and increase its critical flutter speed. The first set of controllers sense the deck's position (pitch angle and heave, or pitch angle alone), whilst the second set (which are mechanical controllers) sense the vertical velocity of the flap hinge points. The control system design problem is solved as a mixed H2/H∞ optimisation problem. The wind tunnel experiments show that these control systems can reduce considerably the deck's buffet response, whilst simultaneously increasing its critical flutter speed

    Wake topology of curved cylinders at low Reynolds numbers

    No full text

    Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics

    Get PDF
    The Unsteady Vortex-Lattice Method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less computationally-expensive potential-flow models, such as the Doublet-Lattice Method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the Unsteady Vortex-Lattice Method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the Unsteady Vortex-Lattice Method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The Unsteady Vortex-Lattice Method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling

    The sugar and energy in non-carbonated sugar-sweetened beverages: a cross-sectional study.

    Get PDF
    BACKGROUND: The consumption of non-carbonated sugar-sweetened beverages (NCSSBs) has many adverse health effects. However, the sugar and energy content in NCSSBs sold in China remain unknown. We aimed to investigate the sugar and energy content of NCSSBs in China and how these contents were labelled. METHODS: A cross-sectional survey was conducted in 15 supermarkets in Haidian District, Beijing from July to October 2017. The product packaging and nutrient information panels of NCSSBs were recorded to obtain type of products (local/imported), serving size, nutrient contents of carbohydrate, sugar and energy. For those NCSSBs without sugar content information, we used carbohydrate content as a replacement. RESULTS: A total of 463 NCSSBs met the inclusion criteria and were included in our analysis. The median of sugar content and energy content was 9.6 [interquartile range (IQR): 7.1-11.3] g/100 ml and 176 (IQR: 121-201) kJ/100 ml. The median of sugar contents in juice drinks, tea-based beverages, sports drinks and energy drinks were 10.4, 8.5, 5.0 and 7.4 g/100 ml. Imported products had higher sugar and energy content than local products. There were 95.2% products of NCSSBs receiving a 'red'(high) label for sugars per portion according to the UK criteria, and 81.6% products exceeding the daily free sugar intake recommendation from the World Health Organization (25 g). There were 82 (17.7%) products with sugar content on the nutrition labels and 60.2% of them were imported products. CONCLUSIONS: NCSSBs had high sugar and energy content, and few of them provided sugar content information on their nutrition labels especially in local products. Measures including developing better regulation of labelling, reducing sugar content and restricting the serving size are needed for reducing sugar intakes in China

    Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness

    Full text link
    corecore